[11:00-11:20] Frequency response for discrete-time systems

If a complex sinusoidal signal is input to an LTI system, the output is another complex sinusoid with the same frequency; no new frequencies are created. The sinusoid that is output has an amplitude scaled by the magnitude response $|H(e^{j\hat{\omega}})|$ and has its phase shifted by the phase response $\angle H(e^{j\omega})$.

$$x[n] \xrightarrow{y[n] = h[n] * x[n]} X(e^{j\widehat{\omega}}) \xrightarrow{Y(e^{j\widehat{\omega}}) = H(e^{j\widehat{\omega}})X(e^{j\widehat{\omega}})} H(e^{j\widehat{\omega}}) = |H(e^{j\widehat{\omega}})|e^{j\angle H(e^{j\omega})}$$

We can design the LTI system to apply gain—amplification, no change, attenuation, or zerod out—to different frequencies.

$$|H(e^{j\widehat{\omega}})| = \begin{cases} > 1 & \text{amplification} \\ 1 & \text{no change} \\ (0,1) & \text{attenuation} \\ 0 & \text{zero out} \end{cases}$$

$$\underbrace{\text{group delay}(\widehat{\omega})}_{\text{units of samples}} = \frac{-d}{d\widehat{\omega}} \angle H(e^{j\widehat{\omega}})$$

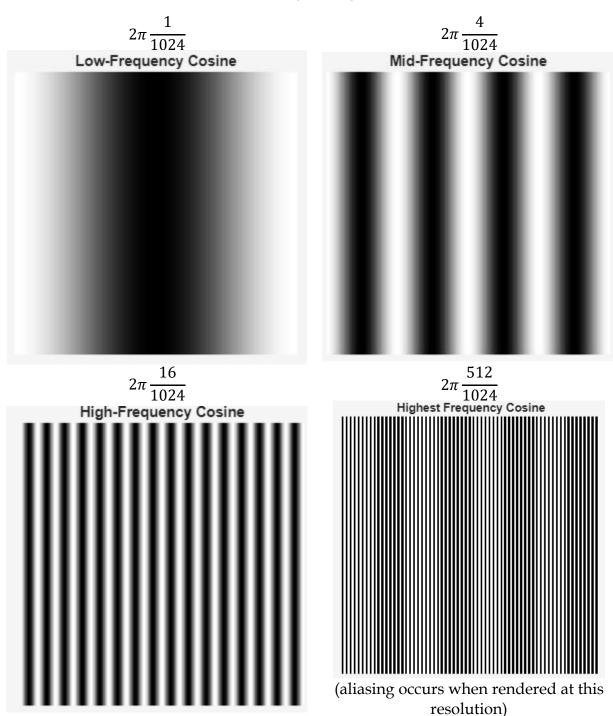
For many applications (e.g audio), we want group delay to be constant as a function of frequency; otherwise, components at different frequencies (e.g. different instruments) will lose synchronization.

[11:20-11:30] Frequency response of common systems

	$\left H\left(e^{j\widehat{\omega}} ight) ight $	$\angle H(e^{j\widehat{\omega}})$
Ideal delay $y[n] = x[n-1]$	1	$-\omega$
Two sample average $y[n] = \frac{1}{2}x[n] + \frac{1}{2}x[n-1]$	$\cos\left(\frac{\widehat{\omega}}{2}\right)$	$-\frac{\widehat{\omega}}{2}$
First order difference $y[n] = \frac{1}{2}x[n] - \frac{1}{2}x[n-1]$	$\begin{cases} \sin\left(\frac{\widehat{\omega}}{2}\right) & 0 \le \widehat{\omega} < \pi \\ -\sin\left(\frac{\widehat{\omega}}{2}\right) & -\pi \le \widehat{\omega} < 0 \end{cases}$	$\begin{cases} \frac{\pi}{2} - \frac{\widehat{\omega}}{2} & 0 \le \widehat{\omega} < \pi \\ -\frac{\pi}{2} - \frac{\widehat{\omega}}{2} & -\pi \le \widehat{\omega} < 0 \end{cases}$

[11:30-12:00] Image processing demo

If a discrete-time cosine completes one full cycle over the course of 1024 samples, the discrete-time frequency is $2\pi\frac{1}{1024} = \frac{\pi}{512}$ radians per sample. If four cycles are completed, the discrete-time frequency would be $2\pi\frac{4}{1024} = \frac{\pi}{128}$, and so on.



inege Rays Cosines. m deno

$$y[n] = \cos(\hat{\omega}, n)$$
 for the
first
does not $\hat{\omega}_i = \frac{2\pi}{1024}$ cosine
scaling by
 1215 and $y_2[n] = \cos(\hat{\omega}_a n)$ second
 215 and 215 215